Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nat Neurosci ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689142

RESUMO

The cortex has a characteristic layout with specialized functional areas forming distributed large-scale networks. However, substantial work shows striking variation in this organization across people, which relates to differences in behavior. While most previous work treats individual differences as linked to boundary shifts between the borders of regions, here we show that cortical 'variants' also occur at a distance from their typical position, forming ectopic intrusions. Both 'border' and 'ectopic' variants are common across individuals, but differ in their location, network associations, properties of subgroups of individuals, activations during tasks, and prediction of behavioral phenotypes. Border variants also track significantly more with shared genetics than ectopic variants, suggesting a closer link between ectopic variants and environmental influences. This work argues that these two dissociable forms of variation-border shifts and ectopic intrusions-must be separately accounted for in the analysis of individual differences in cortical systems across people.

2.
Nat Neurosci ; 27(5): 1000-1013, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38532024

RESUMO

Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases-the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is an evolving resource comprising 53,273 individual-specific network maps, from more than 9,900 individuals, across ages and cohorts, including the Adolescent Brain Cognitive Development study, the Developmental Human Connectome Project and others. We also generated probabilistic network maps across multiple ages and integration zones (using a new overlapping mapping technique, Overlapping MultiNetwork Imaging). Using regions of high network invariance improved the reproducibility of executive function statistical maps in brain-wide associations compared to group average-based parcellations. Finally, we provide a potential use case for probabilistic maps for targeted neuromodulation. The atlas is expandable to alternative datasets with an online interface encouraging the scientific community to explore and contribute to understanding the human brain function more precisely.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adolescente , Masculino , Feminino , Adulto , Adulto Jovem , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Mapeamento Encefálico/métodos , Atlas como Assunto , Criança , Probabilidade , Vias Neurais/fisiologia
3.
Hum Brain Mapp ; 45(2): e26615, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339956

RESUMO

Violence exposure is associated with worsening anxiety and depression symptoms among adolescents. Mechanistically, social defeat stress models in mice indicate that violence increases peripherally derived macrophages in threat appraisal regions of the brain, which have been causally linked to anxious behavior. In the present study, we investigate if there is a path connecting violence exposure with internalizing symptom severity through peripheral inflammation and amygdala connectivity. Two hundred and thirty-three adolescents, ages 12-15, from the Chicago area completed clinical assessments, immune assays and neuroimaging. A high-dimensional multimodal mediation model was fit, using violence exposure as the predictor, 12 immune variables as the first set of mediators and 288 amygdala connectivity variables as the second set, and internalizing symptoms as the primary outcome measure. 56.2% of the sample had been exposed to violence in their lifetime. Amygdala-hippocampus connectivity mediated the association between violence exposure and internalizing symptoms ( ζ ̂ Hipp π ̂ Hipp = 0.059 $$ {\hat{\zeta}}_{\mathrm{Hipp}}{\hat{\pi}}_{\mathrm{Hipp}}=0.059 $$ , 95 % CI boot = 0.009,0.134 $$ 95\%{\mathrm{CI}}_{\mathrm{boot}}=\left[\mathrm{0.009,0.134}\right] $$ ). There was no evidence that inflammation or inflammation and amygdala connectivity in tandem mediated the association. Considering the amygdala and the hippocampus work together to encode, consolidate, and retrieve contextual fear memories, violence exposure may be associated with greater connectivity between the amygdala and the hippocampus because it could be adaptive for the amygdala and the hippocampus to be in greater communication following violence exposure to facilitate evaluation of contextual threat cues. Therefore, chronic elevations of amygdala-hippocampal connectivity may indicate persistent vigilance that leads to internalizing symptoms.


Assuntos
Exposição à Violência , Neuroimunomodulação , Animais , Camundongos , Análise de Mediação , Imageamento por Ressonância Magnética/métodos , Inflamação/diagnóstico por imagem
4.
Netw Neurosci ; 7(3): 864-905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781138

RESUMO

Progress in scientific disciplines is accompanied by standardization of terminology. Network neuroscience, at the level of macroscale organization of the brain, is beginning to confront the challenges associated with developing a taxonomy of its fundamental explanatory constructs. The Workgroup for HArmonized Taxonomy of NETworks (WHATNET) was formed in 2020 as an Organization for Human Brain Mapping (OHBM)-endorsed best practices committee to provide recommendations on points of consensus, identify open questions, and highlight areas of ongoing debate in the service of moving the field toward standardized reporting of network neuroscience results. The committee conducted a survey to catalog current practices in large-scale brain network nomenclature. A few well-known network names (e.g., default mode network) dominated responses to the survey, and a number of illuminating points of disagreement emerged. We summarize survey results and provide initial considerations and recommendations from the workgroup. This perspective piece includes a selective review of challenges to this enterprise, including (1) network scale, resolution, and hierarchies; (2) interindividual variability of networks; (3) dynamics and nonstationarity of networks; (4) consideration of network affiliations of subcortical structures; and (5) consideration of multimodal information. We close with minimal reporting guidelines for the cognitive and network neuroscience communities to adopt.

5.
medRxiv ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37701731

RESUMO

1The relationship between the acute effects of psychedelics and their persisting neurobiological and psychological effects is poorly understood. Here, we tracked brain changes with longitudinal precision functional mapping in healthy adults before, during, and for up to 3 weeks after oral psilocybin and methylphenidate (17 MRI visits per participant) and again 6+ months later. Psilocybin disrupted connectivity across cortical networks and subcortical structures, producing more than 3-fold greater acute changes in functional networks than methylphenidate. These changes were driven by desynchronization of brain activity across spatial scales (area, network, whole brain). Psilocybin-driven desynchronization was observed across association cortex but strongest in the default mode network (DMN), which is connected to the anterior hippocampus and thought to create our sense of self. Performing a perceptual task reduced psilocybin-induced network changes, suggesting a neurobiological basis for grounding, connecting with physical reality during psychedelic therapy. The acute brain effects of psilocybin are consistent with distortions of space-time and the self. Psilocybin induced persistent decrease in functional connectivity between the anterior hippocampus and cortex (and DMN in particular), lasting for weeks but normalizing after 6 months. Persistent suppression of hippocampal-DMN connectivity represents a candidate neuroanatomical and mechanistic correlate for psilocybin's pro-plasticity and anti-depressant effects.

6.
Mol Psychiatry ; 28(8): 3278-3292, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37563277

RESUMO

BACKGROUND: Psychotic disorders are characterized by structural and functional abnormalities in brain networks. Neuroimaging techniques map and characterize such abnormalities using unique features (e.g., structural integrity, coactivation). However, it is unclear if a specific method, or a combination of modalities, is particularly effective in identifying differences in brain networks of someone with a psychotic disorder. METHODS: A systematic meta-analysis evaluated machine learning classification of schizophrenia spectrum disorders in comparison to healthy control participants using various neuroimaging modalities (i.e., T1-weighted imaging (T1), diffusion tensor imaging (DTI), resting state functional connectivity (rs-FC), or some combination (multimodal)). Criteria for manuscript inclusion included whole-brain analyses and cross-validation to provide a complete picture regarding the predictive ability of large-scale brain systems in psychosis. For this meta-analysis, we searched Ovid MEDLINE, PubMed, PsychInfo, Google Scholar, and Web of Science published between inception and March 13th 2023. Prediction results were averaged for studies using the same dataset, but parallel analyses were run that included studies with pooled sample across many datasets. We assessed bias through funnel plot asymmetry. A bivariate regression model determined whether differences in imaging modality, demographics, and preprocessing methods moderated classification. Separate models were run for studies with internal prediction (via cross-validation) and external prediction. RESULTS: 93 studies were identified for quantitative review (30 T1, 9 DTI, 40 rs-FC, and 14 multimodal). As a whole, all modalities reliably differentiated those with schizophrenia spectrum disorders from controls (OR = 2.64 (95%CI = 2.33 to 2.95)). However, classification was relatively similar across modalities: no differences were seen across modalities in the classification of independent internal data, and a small advantage was seen for rs-FC studies relative to T1 studies in classification in external datasets. We found large amounts of heterogeneity across results resulting in significant signs of bias in funnel plots and Egger's tests. Results remained similar, however, when studies were restricted to those with less heterogeneity, with continued small advantages for rs-FC relative to structural measures. Notably, in all cases, no significant differences were seen between multimodal and unimodal approaches, with rs-FC and unimodal studies reporting largely overlapping classification performance. Differences in demographics and analysis or denoising were not associated with changes in classification scores. CONCLUSIONS: The results of this study suggest that neuroimaging approaches have promise in the classification of psychosis. Interestingly, at present most modalities perform similarly in the classification of psychosis, with slight advantages for rs-FC relative to structural modalities in some specific cases. Notably, results differed substantially across studies, with suggestions of biased effect sizes, particularly highlighting the need for more studies using external prediction and large sample sizes. Adopting more rigorous and systematized standards will add significant value toward understanding and treating this critical population.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Imagem de Tensor de Difusão/métodos , Neuroimagem , Transtornos Psicóticos/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Esquizofrenia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
7.
Neuroimage ; 279: 120314, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37557971

RESUMO

Cortical task control networks, including the cingulo-opercular (CO) network play a key role in decision-making across a variety of functional domains. In particular, the CO network functions in a performance reporting capacity that supports successful task performance, especially in response to errors and ambiguity. In two studies testing the contribution of the CO network to ambiguity processing, we presented a valence bias task in which masked clearly and ambiguously valenced emotional expressions were slowly revealed over several seconds. This slow reveal task design provides a window into the decision-making mechanisms as they unfold over the course of a trial. In the main study, the slow reveal task was administered to 32 young adults in the fMRI environment and BOLD time courses were extracted from regions of interest in three control networks. In a follow-up study, the task was administered to a larger, online sample (n = 81) using a more extended slow reveal design with additional unmasking frames. Positive judgments of surprised faces were uniquely accompanied by slower response times and strong, late activation in the CO network. These results support the initial negativity hypothesis, which posits that the default response to ambiguity is negative and positive judgments are associated with a more effortful controlled process, and additionally suggest that this controlled process is mediated by the CO network. Moreover, ambiguous trials were characterized by a second CO response at the end of the trial, firmly placing CO function late in the decision-making process.


Assuntos
Mapeamento Encefálico , Julgamento , Adulto Jovem , Humanos , Seguimentos , Tempo de Reação/fisiologia , Imageamento por Ressonância Magnética
8.
Netw Neurosci ; 7(2): 411-430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397894

RESUMO

While correlations in the BOLD fMRI signal are widely used to capture functional connectivity (FC) and its changes across contexts, its interpretation is often ambiguous. The entanglement of multiple factors including local coupling of two neighbors and nonlocal inputs from the rest of the network (affecting one or both regions) limits the scope of the conclusions that can be drawn from correlation measures alone. Here we present a method of estimating the contribution of nonlocal network input to FC changes across different contexts. To disentangle the effect of task-induced coupling change from the network input change, we propose a new metric, "communication change," utilizing BOLD signal correlation and variance. With a combination of simulation and empirical analysis, we demonstrate that (1) input from the rest of the network accounts for a moderate but significant amount of task-induced FC change and (2) the proposed "communication change" is a promising candidate for tracking the local coupling in task context-induced change. Additionally, when compared to FC change across three different tasks, communication change can better discriminate specific task types. Taken together, this novel index of local coupling may have many applications in improving our understanding of local and widespread interactions across large-scale functional networks.

9.
Neuroimage ; 277: 120195, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37286152

RESUMO

Connector 'hubs' are brain regions with links to multiple networks. These regions are hypothesized to play a critical role in brain function. While hubs are often identified based on group-average functional magnetic resonance imaging (fMRI) data, there is considerable inter-subject variation in the functional connectivity profiles of the brain, especially in association regions where hubs tend to be located. Here we investigated how group hubs are related to locations of inter-individual variability. To answer this question, we examined inter-individual variation at group-level hubs in both the Midnight Scan Club and Human Connectome Project datasets. The top group hubs defined based on the participation coefficient did not overlap strongly with the most prominent regions of inter-individual variation (termed 'variants' in prior work). These hubs have relatively strong similarity across participants and consistent cross-network profiles, similar to what was seen for many other areas of cortex. Consistency across participants was further improved when these hubs were allowed to shift slightly in local position. Thus, our results demonstrate that the top group hubs defined with the participation coefficient are generally consistent across people, suggesting they may represent conserved cross-network bridges. More caution is warranted with alternative hub measures, such as community density (which are based on spatial proximity to network borders) and intermediate hub regions which show higher correspondence to locations of individual variability.


Assuntos
Conectoma , Rede Nervosa , Humanos , Vias Neurais , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos
10.
Neurosci Biobehav Rev ; 152: 105259, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37268180

RESUMO

A main goal in translational neuroscience is to identify neural correlates of psychopathology ("biomarkers") that can be used to facilitate diagnosis, prognosis, and treatment. This goal has led to substantial research into how psychopathology symptoms relate to large-scale brain systems. However, these efforts have not yet resulted in practical biomarkers used in clinical practice. One reason for this underwhelming progress may be that many study designs focus on increasing sample size instead of collecting additional data within each individual. This focus limits the reliability and predictive validity of brain and behavioral measures in any one person. As biomarkers exist at the level of individuals, an increased focus on validating them within individuals is warranted. We argue that personalized models, estimated from extensive data collection within individuals, can address these concerns. We review evidence from two, thus far separate, lines of research on personalized models of (1) psychopathology symptoms and (2) fMRI measures of brain networks. We close by proposing approaches uniting personalized models across both domains to improve biomarker research.


Assuntos
Encéfalo , Psiquiatria , Humanos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Biomarcadores
11.
Nature ; 617(7960): 351-359, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37076628

RESUMO

Motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down the precentral gyrus from foot to face representations1,2, despite evidence for concentric functional zones3 and maps of complex actions4. Here, using precision functional magnetic resonance imaging (fMRI) methods, we find that the classic homunculus is interrupted by regions with distinct connectivity, structure and function, alternating with effector-specific (foot, hand and mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, as well as to the cingulo-opercular network (CON), critical for action5 and physiological control6, arousal7, errors8 and pain9. This interdigitation of action control-linked and motor effector regions was verified in the three largest fMRI datasets. Macaque and pediatric (newborn, infant and child) precision fMRI suggested cross-species homologues and developmental precursors of the inter-effector system. A battery of motor and action fMRI tasks documented concentric effector somatotopies, separated by the CON-linked inter-effector regions. The inter-effectors lacked movement specificity and co-activated during action planning (coordination of hands and feet) and axial body movement (such as of the abdomen or eyebrows). These results, together with previous studies demonstrating stimulation-evoked complex actions4 and connectivity to internal organs10 such as the adrenal medulla, suggest that M1 is punctuated by a system for whole-body action planning, the somato-cognitive action network (SCAN). In M1, two parallel systems intertwine, forming an integrate-isolate pattern: effector-specific regions (foot, hand and mouth) for isolating fine motor control and the SCAN for integrating goals, physiology and body movement.


Assuntos
Mapeamento Encefálico , Cognição , Córtex Motor , Mapeamento Encefálico/métodos , Mãos/fisiologia , Imageamento por Ressonância Magnética , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Humanos , Recém-Nascido , Lactente , Criança , Animais , Macaca/anatomia & histologia , Macaca/fisiologia , Pé/fisiologia , Boca/fisiologia , Conjuntos de Dados como Assunto
12.
J Cogn Neurosci ; 35(2): 200-225, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36378901

RESUMO

Resting-state fMRI studies have revealed that individuals exhibit stable, functionally meaningful divergences in large-scale network organization. The locations with strongest deviations (called network "variants") have a characteristic spatial distribution, with qualitative evidence from prior reports suggesting that this distribution differs across hemispheres. Hemispheric asymmetries can inform us on constraints guiding the development of these idiosyncratic regions. Here, we used data from the Human Connectome Project to systematically investigate hemispheric differences in network variants. Variants were significantly larger in the right hemisphere, particularly along the frontal operculum and medial frontal cortex. Variants in the left hemisphere appeared most commonly around the TPJ. We investigated how variant asymmetries vary by functional network and how they compare with typical network distributions. For some networks, variants seemingly increase group-average network asymmetries (e.g., the group-average language network is slightly bigger in the left hemisphere and variants also appeared more frequently in that hemisphere). For other networks, variants counter the group-average network asymmetries (e.g., the default mode network is slightly bigger in the left hemisphere, but variants were more frequent in the right hemisphere). Intriguingly, left- and right-handers differed in their network variant asymmetries for the cingulo-opercular and frontoparietal networks, suggesting that variant asymmetries are connected to lateralized traits. These findings demonstrate that idiosyncratic aspects of brain organization differ systematically across the hemispheres. We discuss how these asymmetries in brain organization may inform us on developmental constraints of network variants and how they may relate to functions differentially linked to the two hemispheres.


Assuntos
Mapeamento Encefálico , Conectoma , Humanos , Individualidade , Lateralidade Funcional , Encéfalo/diagnóstico por imagem , Lobo Frontal , Imageamento por Ressonância Magnética
13.
Cereb Cortex ; 33(6): 2879-2900, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35802477

RESUMO

Completing complex tasks requires that we flexibly integrate information across brain areas. While studies have shown how functional networks are altered during different tasks, this work has generally focused on a cross-subject approach, emphasizing features that are common across people. Here we used extended sampling "precision" fMRI data to test the extent to which task states generalize across people or are individually specific. We trained classifiers to decode state using functional network data in single-person datasets across 5 diverse task states. Classifiers were then tested on either independent data from the same person or new individuals. Individualized classifiers were able to generalize to new participants. However, classification performance was significantly higher within a person, a pattern consistent across model types, people, tasks, feature subsets, and even for decoding very similar task conditions. Notably, these findings also replicated in a new independent dataset. These results suggest that individual-focused approaches can uncover robust features of brain states, including features obscured in cross-subject analyses. Individual-focused approaches have the potential to deepen our understanding of brain interactions during complex cognition.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Cognição , Imageamento por Ressonância Magnética/métodos , Descanso
14.
PLoS Biol ; 20(8): e3001749, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35984785

RESUMO

A clear understanding of how human brain networks reflect task performance has been lacking, in part due to methodological difficulties. A new study combines the temporal resolution of EEG, MRI source localization, and multivariate modeling to address this need.


Assuntos
Mapeamento Encefálico , Eletroencefalografia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Cognição , Eletroencefalografia/métodos , Humanos , Imageamento por Ressonância Magnética/métodos
15.
Neuroimage ; 260: 119476, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35842100

RESUMO

Recent work identified single time points ("events") of high regional cofluctuation in functional Magnetic Resonance Imaging (fMRI) which contain more large-scale brain network information than other, low cofluctuation time points. This suggested that events might be a discrete, temporally sparse signal which drives functional connectivity (FC) over the timeseries. However, a different, not yet explored possibility is that network information differences between time points are driven by sampling variability on a constant, static, noisy signal. Using a combination of real and simulated data, we examined the relationship between cofluctuation and network structure and asked if this relationship was unique, or if it could arise from sampling variability alone. First, we show that events are not discrete - there is a gradually increasing relationship between network structure and cofluctuation; ∼50% of samples show very strong network structure. Second, using simulations we show that this relationship is predicted from sampling variability on static FC. Finally, we show that randomly selected points can capture network structure about as well as events, largely because of their temporal spacing. Together, these results suggest that, while events exhibit particularly strong representations of static FC, there is little evidence that events are unique timepoints that drive FC structure. Instead, a parsimonious explanation for the data is that events arise from a single static, but noisy, FC structure.


Assuntos
Mapeamento Encefálico , Encéfalo , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais
16.
Neuron ; 110(9): 1446-1449, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35512638

RESUMO

In a recent issue of Nature, Marek et al. (2022) demonstrate that cross-sectional brain-behavior correlations are often small and unreliable without large samples. This observation pushes human neuroscience toward study designs that either maximize sample sizes to detect small effects or maximize effect sizes using focused investigations.


Assuntos
Encéfalo , Neurociências , Estudos Transversais , Humanos , Reprodutibilidade dos Testes , Tamanho da Amostra
17.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34404728

RESUMO

The hippocampus is critically important for a diverse range of cognitive processes, such as episodic memory, prospective memory, affective processing, and spatial navigation. Using individual-specific precision functional mapping of resting-state functional MRI data, we found the anterior hippocampus (head and body) to be preferentially functionally connected to the default mode network (DMN), as expected. The hippocampal tail, however, was strongly preferentially functionally connected to the parietal memory network (PMN), which supports goal-oriented cognition and stimulus recognition. This anterior-posterior dichotomy of resting-state functional connectivity was well-matched by differences in task deactivations and anatomical segmentations of the hippocampus. Task deactivations were localized to the hippocampal head and body (DMN), relatively sparing the tail (PMN). The functional dichotomization of the hippocampus into anterior DMN-connected and posterior PMN-connected parcels suggests parallel but distinct circuits between the hippocampus and medial parietal cortex for self- versus goal-oriented processing.


Assuntos
Mapeamento Encefálico , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Adulto , Bases de Dados Factuais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória Episódica , Vias Neurais , Análise e Desempenho de Tarefas , Adulto Jovem
19.
Neuroimage ; 237: 118164, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000397

RESUMO

Many recent developments surrounding the functional network organization of the human brain have focused on data that have been averaged across groups of individuals. While such group-level approaches have shed considerable light on the brain's large-scale distributed systems, they conceal individual differences in network organization, which recent work has demonstrated to be common and widespread. This individual variability produces noise in group analyses, which may average together regions that are part of different functional systems across participants, limiting interpretability. However, cost and feasibility constraints may limit the possibility for individual-level mapping within studies. Here our goal was to leverage information about individual-level brain organization to probabilistically map common functional systems and identify locations of high inter-subject consensus for use in group analyses. We probabilistically mapped 14 functional networks in multiple datasets with relatively high amounts of data. All networks show "core" (high-probability) regions, but differ from one another in the extent of their higher-variability components. These patterns replicate well across four datasets with different participants and scanning parameters. We produced a set of high-probability regions of interest (ROIs) from these probabilistic maps; these and the probabilistic maps are made publicly available, together with a tool for querying the network membership probabilities associated with any given cortical location. These quantitative estimates and public tools may allow researchers to apply information about inter-subject consensus to their own fMRI studies, improving inferences about systems and their functional specializations.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Individualidade , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Conectoma/métodos , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Probabilidade
20.
Curr Opin Behav Sci ; 40: 19-26, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33553511

RESUMO

Cognitive control, the ability to engage in goal-related behavior, is linked to frontal, parietal, and cingulate brain regions. However, the underlying function(s) of these regions is still in question, with ongoing discussions about their specificity and/or multifunctionality. These brain regions are also among the most variable across individuals, which may confound multi-functionality with inter-individual heterogeneity. Precision fMRI-extended data acquisition from single individuals-allows for reliable individualized mapping of brain organization. We review examples of recent studies that use precision fMRI to surmount inter-individual variability in functional neuroanatomy. These studies provide evidence of interleaved specialized and multifunctional regions in the frontal cortex. We discuss the potential for these techniques to address outstanding controversies on the neural underpinnings of cognitive control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA